

## ORIGINAL ARTICLE

Mutsumi Abe · Hisako Saitoh · Yayoi Sato  
Kin-ichi Hamaguchi · Masahiro Kiuchi

## Immunohistochemical study of the kidneys after severe muscular injury

Received: 2 December 1999 / Accepted: 22 May 2000

**Abstract** Severe muscular injury sometimes causes renal failure, and myoglobin in skeletal muscle is known to induce toxic free oxygen radicals in the kidneys. The relationship between the immunohistochemical expression of myoglobin and the scavenger copper/zinc superoxide dismutase (Cu/Zn-SOD) was investigated in kidneys taken from two autopsy groups, a group with tourniquet shock ( $n = 4$ ), and a group with severely injured skeletal muscle ( $n = 18$ ). Paraffin-embedded kidney sections were used for immunohistochemical staining by the avidin-biotin-complex (ABC) method using antibodies against myoglobin and Cu/Zn-SOD. Detection of the two antigens was analyzed qualitatively. In most cases of tourniquet shock in which the survival time was considered to be relatively long, myoglobin staining was positive and Cu/Zn-SOD was negative. Among the seven cases of severely injured skeletal muscle in which the survival period was considered to be relatively short, positive staining was detected immunohistochemically for both myoglobin and Cu/Zn-SOD. Moreover, in most of the cases in this group that showed acute tubular necrosis, immunohistochemical staining was negative for both markers, whereas positive staining was found for most of the cases in which the kidneys were revealed to be normal by HE staining. These findings suggest that when myoglobin enters the kidneys via the circulation, Cu/Zn-SOD reacts to eliminate free radicals, but is depleted by consumption in the long run, and that there might be a relationship between these histological findings and immunohistochemical expression.

**Keywords** Immunohistochemistry · Kidney · Myoglobin · Cu/Zn superoxide dismutase · Renal failure

M. Abe (✉) · H. Saitoh · Y. Sato · M. Kiuchi  
Department of Legal Medicine, School of Medicine,  
Chiba University, 1-8-1 Inohana, Chuo-ku,  
Chiba City, Chiba, Japan  
Tel.: +81-43-2262078, Fax: +81-43-2262005

K. Hamaguchi  
Department of Clinical Laboratory, National Sakura Hospital,  
2-36-2 Ebaradai, Sakura City, Chiba, Japan

### Introduction

Renal failure in cases of severe muscular injury has presented a great challenge in both clinical and forensic fields. This is known as the crush syndrome and the first case was reported in 1941 [1]. Generally, the cause of renal failure is thought to be massive leakage of the contents of myocytes into the plasma due to rhabdomyolysis [2] and many subsequent studies have suggested that circular reperfusion to the ischaemically damaged muscle tissue induces the production of free oxygen radicals [3, 4, 5, 6]. These free radicals somatically increase vascular permeability and attack the unsaturated free fatty acids in the phospholipid layer of the cell membrane, thereby leading to cell death and, ultimately, tissue necrosis [3, 7]. In the kidneys, the iron component of myoglobin also produces free radicals and leads to renal failure in the same way [8, 9]. On the other hand, there are some substances, known as scavengers, that have protective effects on free radicals. Superoxide dismutase (SOD) is the most common scavenger and catalyses the following reaction [10]:



A recent study reported that post-mortem changes do not influence the activity of SOD in myocardial tissue, therefore SOD was thought to be the best marker to estimate the internal reaction against free radicals [11, 12].

There are three major kinds of SOD, copper/zinc SOD (Cu/Zn-SOD), which is expressed throughout the cell, manganese SOD (Mn-SOD), which is located mainly in the mitochondrial matrix, and iron SOD (Fe-SOD), which is found in many bacteria [10, 13]. During renal failure in cases of severe muscular injury, it is thought that scavengers participate in some type of reaction that protects against free radicals produced by myoglobin. Cu/Zn-SOD was selected from among the three types of SOD for investigation in the present study.

The aim of this study was to investigate the distribution of myoglobin and Cu/Zn-SOD in the kidneys when muscle tissue is massively damaged and renal failure is suspected.

**Table 1** Description of cases included in this study

| Group | Case no. | Age (years) | Sex    | Cause of death            | Survival time | Time after death |
|-------|----------|-------------|--------|---------------------------|---------------|------------------|
| A     | 1        | 27          | Male   | Tourniquet shock          | 1 day         | 2 days           |
|       | 2        | 45          | Male   | Tourniquet shock          | 2 days        | 17 h             |
|       | 3        | 23          | Male   | Tourniquet shock          | Unknown       | 1.5 days         |
|       | 4        | 26          | Female | Tourniquet shock          | Unknown       | Unknown          |
| B     | 5        | 16          | Male   | Traumatic shock           | < 1 h         | 2 days           |
|       | 6        | 16          | Male   | Traumatic shock           | < 1 h         | 12 h             |
|       | 7        | 44          | Male   | Traumatic shock           | < 1 h         | 1.5 days         |
|       | 8        | 40          | Male   | Traumatic shock           | < 1 h         | 1.5 days         |
|       | 9        | 84          | Male   | Traumatic shock           | < 1 h         | 1.5 days         |
|       | 10       | 42          | Male   | Traumatic shock           | < 1 h         | 20 h             |
|       | 11       | 49          | Male   | Brain injury              | < 1 h         | 1.5 days         |
|       | 12       | 53          | Male   | Traumatic shock           | < 1 h         | 1.5 days         |
|       | 13       | 61          | Male   | Traumatic shock           | < 1 h         | 14 h             |
|       | 14       | 63          | Male   | Traumatic shock           | < 1 h         | 3.5 days         |
|       | 15       | 60          | Male   | Traumatic shock           | < 1 h         | 1.5 days         |
|       | 16       | 39          | Male   | Brain injury              | < 1 h         | 19 h             |
|       | 17       | 23          | Male   | Compression               | < 1 h         | 1.5 days         |
|       | 18       | 55          | Male   | Compression               | 1 h           | 2.5 days         |
|       | 19       | 64          | Male   | Traumatic shock           | 2 h           | 2 days           |
|       | 20       | 80          | Male   | Traumatic shock           | 5 h           | 3 days           |
|       | 21       | 29          | Male   | Traumatic shock           | 7.5 h         | 9 h              |
|       | 22       | 16          | Male   | Brain injury              | 39 h          | 2 days           |
| C     | 23       | 28          | Male   | Hypoxia                   | < 1 h         | 23 h             |
|       | 24       | 13          | Male   | Acute cardiac failure     | < 1 h         | 22 h             |
|       | 25       | 26          | Male   | Acute cardiac failure     | < 1 h         | 2 days           |
|       | 26       | 31          | Male   | Exsanguination            | 18 h          | 23 h             |
|       | 27       | 13          | Female | Pneumonia                 | 6.5 days      | 1.5 days         |
|       | 28       | 34          | Female | Acute pancreatic necrosis | Unknown       | 2.5 days         |
|       | 29       | 63          | Male   | Hepatocellular cancer     | Unknown       | 2 h              |

## Materials and methods

We selected 29 autopsy cases carried out between 1972 and 1998 at the Department of Legal Medicine, School of Medicine, Chiba University and the National Sakura Hospital which were divided into the following three groups:

- Group A: Victims diagnosed with tourniquet shock ( $n = 4$ ) which is known to cause renal failure after long-term muscle tissue ischemia and reperfusion due to the production of free radicals in the kidney by myoglobin from the necrotic muscle tissue.
- Group B: Victims where muscle tissue was severely injured ( $n = 18$ ).
- Group C: Control subjects with uninjured or with minimal injuries to skeletal muscle ( $n = 7$ ).

The descriptions for each case are shown in Table 1.

Both kidneys from each of the 29 autopsies were fixed in 10% formalin, embedded in paraffin, sliced into 2–4  $\mu\text{m}$ -thick sections and stained with hematoxylin-eosin (HE). Immunostaining was performed using polyclonal rabbit antibodies against human skeletal muscle myoglobin (Biogenesis, New Fields, England) at a dilution of 1:150 and polyclonal sheep antibodies against Cu/Zn-SOD (Biogenesis) at a dilution of 1:100. Detection was carried out using the avidin-biotin-complex (ABC) method with a Vectastain elite ABC kit (Vector, Burlingame, Calif.) for rabbit antibodies to myoglobin and for sheep antibodies to Cu/Zn-SOD.

The sections that showed staining of tubular casts were graded as (+), non-specific background artifacts and intracellular granular Cu/Zn-SOD staining were excluded.

## Results

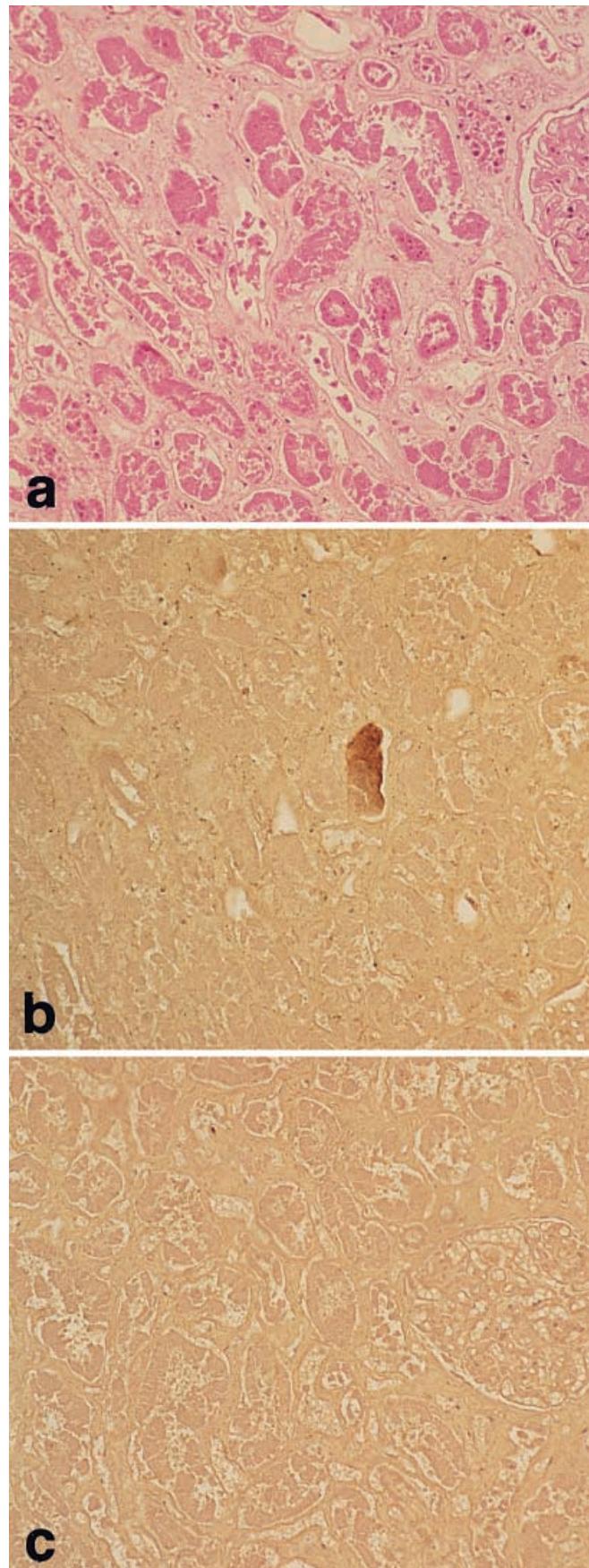
The immunohistochemical staining reactions showed various patterns (Table 2) which are described for each group. There were no cases where negative reactions were found for myoglobin and positive reactions for Cu/Zn-SOD.

### Group A (victims with tourniquet shock)

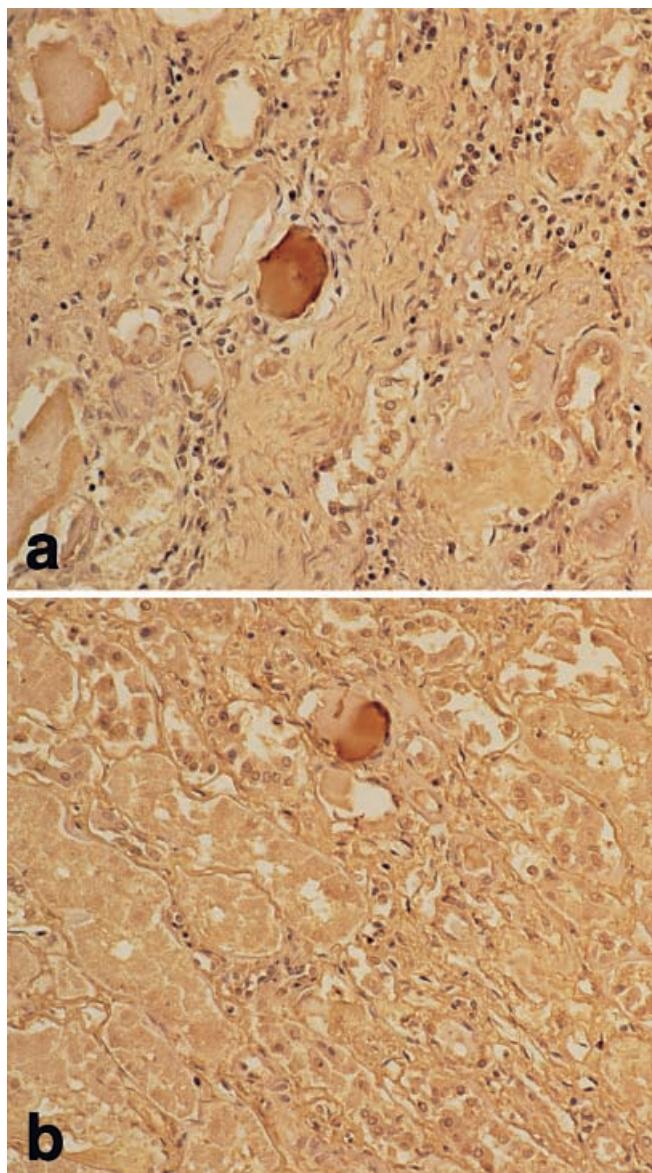
All cases showed acute tubular necrosis with interstitial edema in HE staining (Fig. 1a), and positive staining for myoglobin (Fig. 1b). However, Cu/Zn-SOD staining was negative (Fig. 1c) in all cases except case no.2.

### Group B (victims with severely injured skeletal muscle)

In HE staining, 12 cases from this group showed acute tubular necrosis and 2 cases showed positive immunohistochemical staining for both myoglobin and Cu/Zn-SOD (Fig. 2a,b). The other six cases of this group showed normal kidney tissue, and five of these cases showed positive staining for both antigens. Unlike in group A, there was no case that was positive for myoglobin and negative for


**Table 2** Results of immunostaining for myoglobin and Cu/Zn-SOD (ATN acute tubular necrosis)

| Group | Case no. | ATN | Myoglobin | Cu/Zn-SOD |
|-------|----------|-----|-----------|-----------|
| A     | 1        | +   | +         | -         |
|       | 2        | +   | +         | -         |
|       | 3        | +   | +         | -         |
|       | 4        | +   | +         | +         |
| B     | 5        | +   | -         | -         |
|       | 6        | +   | -         | -         |
|       | 7        | +   | -         | -         |
|       | 8        | -   | +         | +         |
|       | 9        | -   | +         | +         |
|       | 10       | -   | +         | +         |
|       | 11       | +   | -         | -         |
|       | 12       | +   | -         | -         |
|       | 13       | +   | -         | -         |
|       | 14       | +   | -         | -         |
|       | 15       | +   | -         | -         |
|       | 16       | +   | -         | -         |
|       | 17       | -   | -         | -         |
|       | 18       | -   | +         | +         |
|       | 19       | +   | +         | +         |
|       | 20       | +   | +         | +         |
|       | 21       | -   | +         | +         |
|       | 22       | +   | -         | -         |
| C     | 23       | -   | -         | -         |
|       | 24       | -   | -         | -         |
|       | 25       | -   | -         | -         |
|       | 26       | -   | -         | -         |
|       | 27       | -   | -         | -         |
|       | 28       | -   | -         | -         |
|       | 29       | -   | -         | -         |


Cu/Zn-SOD. The survival period was greater than 1 h in four out of seven cases that were immunohistochemically positive for both myoglobin and Cu/Zn-SOD, and in the other three cases this period was even shorter. In the other 11 cases with negative immunohistochemical staining for both antigens, the survival period was less than 1 h, with the exception of case no. 15. The relationship between HE and immunohistochemical staining reaction is shown in Table 2.

#### Group C (controls)

All control cases showed negative staining for both myoglobin and Cu/Zn-SOD.



**Fig. 1** Case (no. 2) of tourniquet shock showing **a** acute tubular necrosis with tubular necrosis and apparent interstitial edema (HE staining  $\times 150$ ); **b** positive myoglobin immunostaining around necrotic tubular epithelium forming tubular cast (ABC method  $\times 150$ ); **c** negative Cu/Zn-SOD staining (ABC method  $\times 150$ )



**Fig. 2** Case (no. 19) of traumatic shock showing **a** myoglobin positive staining of kidney casts (ABC method  $\times 250$ ); **b** positive Cu/Zn-SOD staining similar to the myoglobin staining (ABC method  $\times 250$ )

## Discussion

Oxygen free radical toxicity has been discussed in many studies [14, 15]. Moreover, several reports have described the use of scavenger administration to treat various animals experimentally exposed to free radicals [3, 4, 16, 17, 18, 19].

In most of the present cases of tourniquet shock (group A), tubular necrosis could be seen by HE staining, and myoglobin was positive and Cu/Zn-SOD negative after immunohistochemical staining. The cases in group B, with severe muscular injury, were selected because in such cases, there was the potential for myoglobin released from

injured muscle tissue to leach into the blood and accumulate in the kidneys. In cases of tourniquet shock the survival period was considered to be more than several hours but in group B, the survival period was somewhat shorter than in group A. Moreover, the survival period of the cases that were immunohistochemically positive for both antigens, was thought to be longer than that of the cases with immunohistochemically negative staining for both antigens. We can therefore hypothesize that when myoglobin from the injured skeletal muscle enters the bloodstream and reaches the kidneys, Cu/Zn-SOD reacts to eliminate free radicals, whereas, if there is a long period between injury and death, Cu/Zn-SOD is consumed and depleted. In immunohistochemically negative cases in which the survival period was short, skeletal muscle was severely injured, but there would not have been enough time for myoglobin to accumulate in the kidneys.

The results of this study suggest that the expression of myoglobin and Cu/Zn-SOD are dependent on the survival time. Moreover, 12 cases of group B showed tubular necrosis, but only 2 cases from this group expressed immunohistochemically positive staining. Among the other six cases in which the kidneys were revealed to be normal by HE staining, five cases showed positive immunohistochemical staining for both antigens, i.e., most of the immunohistochemically negative cases had tubular necrosis in the kidney. Therefore, in these cases the injuries were so severe that renal disorders occurred shortly after injury without any contribution from free oxygen radicals.

The results of this study confirmed that Cu/Zn-SOD acts as a scavenger to protect against free radical nephrotoxicity. There is a possibility that other scavengers act in such cases, so further investigations will be needed to confirm the protective effects of free radicals and the histological relationship in cases of severe muscular injury.

In many cases of renal failure, victims suffer from several types of physical violence simultaneously, and thus it can be difficult to determine which of these was the cause of death. The present results should therefore provide useful information that may help in determining the time to death and cause of death in such cases.

**Acknowledgements** We thank the staff of our department for their skillful support in the present investigations.

## References

1. Bywaters EGL, Beall D (1941) Crush injuries with impairment of renal function. *BMJ* 1: 427–432
2. Odeh M (1991) The role of reperfusion-induced injury in the pathogenesis of the crush syndrome. *N Engl J Med* 324: 1417–1422
3. Korthuis R, Granger N, Townsley M, Taylor A (1985) The role of oxygen-derived free radicals in ischemia-induced increases in canine skeletal muscle vascular permeability. *Circ Res* 57: 599–609
4. McCutchan HJ, Schwappach JR, Enquist EG, Walden DL, Terada LS, Reiss OS, Leff JA, Repine JE (1990) Xanthine oxidase-derived from H<sub>2</sub>O<sub>2</sub> contributes to reperfusion injury of ischemic skeletal muscle. *Am J Physiol* 258: H1415–H1419

5. Linas SL, Whittenburg D, Repine JE (1990) Role of xanthine oxidase in ischemia/reperfusion injury. *Am J Physiol* 258: F711–F716
6. Sexton WL, Korthuis RJ, Laughlin MH (1990) Ischemia-reperfusion injury in isolated rat hindquarters. *J Appl Physiol* 68: 387–392
7. Walker PM, Lindsay TF, Labbe R, Mickle DA, Romaschin AD (1987) Salvage of skeletal muscle with free radical scavengers. *J Vasc Surg* 5: 68–75
8. Paller MS (1988) Hemoglobin-and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. *Am J Physiol* 255: F539–F544
9. Smith JK, Carden DL, Grisham MB, Granger DN, Korthuis RJ (1988) Role of iron in ischemia/reperfusion injury to skeletal muscle microvasculature (abstract). *Physiologist* 31: A31
10. Erenel G, Erbas D, Aricioglu A (1993) Free radicals and antioxidant systems. *Mat Med Polona* 85: 37–43
11. Ramos V, Valenzuela A, Villanueva E, Miranda MT (1997) Antioxidant-related enzymes in myocardial zones and human pericardial fluid in relation to the cause of death. *Int J Legal Med* 110: 1–4
12. Lemke R, Reineke T (1997) Antioxidant-related enzymes in myocardial zones and human pericardial fluid in relation to the cause of death (letter to the editor). *Int J Legal Med* 110: 238
13. Zhao M, Matter K, Laissue JA, Zimmermann A (1996) Copper/zinc and manganese superoxide dismutases in alcoholic liver disease: immunohistochemical quantitation. *Histol Histopathol* 11: 899–907
14. Better OS, Rubinstein I, Winaver J (1992) Recent insights into the pathogenesis and early management of the crush syndrome. *Semin Nephrol* 12: 217–222
15. Osuna E, Perez-Carceles MD, Garcia-Lorente A, Sanchez-Hanke M, Vieira DN, Carvalho L, Püschel K, Luna A (1998) Lipid peroxidation in lung tissue after chest trauma and correlation with the duration of the post-trauma survival period. *Int J Legal Med* 111: 256–260
16. Blebea J, Kerr JC, Hobson RW, Padberg FT (1987) The effects of oxygen free radical scavengers on skeletal muscle ischemia and reperfusion injury. *Curr Surg Sep–Oct*, pp 396–399
17. Zhao W, Richardson JS, Mombourquette MJ, Weil JA (1995) An in vitro EPR study of the free radical scavenging actions of the lazaroid antioxidants U74500A and U78517F. *Free Radic Biol Med* 19: 21–30
18. Vecchi ED, Lubatti L, Beretta C, Ferrero S, Rinaldi P, Kienle MG, Trazzi R, Paroni R (1998) Protection from renal ischemia-reperfusion injury by the 2-methylaminochroman U83836E. *Kidney Int* 54: 857–863
19. Aoki Y, Nata M, Odaira T, Sagisaka K (1992) Suppression of ischemia-reperfusion injury by liposomal superoxide dismutase in rats subjected to tourniquet shock. *Int J Legal Med* 105: 5–9